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ABSTRACT

We investigate reasonably large modules with a tilting-type behaviour,

regarded as bounded complexes of projective modules.

Introduction

In this paper we compare the behaviour of tilting modules with that of big and

functorial “approximations” of tilting modules, regarded as objects of the huge

category of right bounded complexes of projective modules.

The motivation behind this note was a question posed by F. Mantese and

A. Tonolo shortly before and during the Cotilting Workshop held in Prague

in January 2004. Before we state it in a precise form, we may describe, as

follows, the two complexes (of projective modules), say Ṫ and Ċ, involved in

the question. First of all, the bounded complex Ṫ is the projective resolution of

a “selforthogonal” module T (of finite projective dimension) with the following

property

• If M is a non-zero module and Ṁ is its projetcive resolution, then there

is a morphism from Ṫ to a shift of Ṁ which is not homotopic to zero.

Secondly, Ċ is a non-zero right bounded complex with the following property

• Every morphism from Ṫ to any shift of Ċ is homotopic to zero.
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Since Ṫ is a very special “properly partial tilting” complex, the existence of

such a Ċ follows from the theory of tilting complexes, introduced by Rickard

[Rk]. The question of Mantese and Tonolo is whether such a Ċ would be

necessarily unbounded. We will show that Ċ could be not only bounded, but

also that it could be quite small. Surprisingly enough, we may obtain such a

complex Ċ by “approximating” a direct summand Ḃ (indecomposable as well as

decomposable) of a “properly partial tilting” complex, admitting Ṫ as a direct

summand (Remark 6). We also note that many useful tilting-type complexes

seem to inherit from tilting-type modules a “combinatorial nature” [R2, p. 123].

As we shall see, we try to use as many indecomposable complexes as possible,

with as many indecomposable components as possible. (Examples A, B and D).

In other words, following the terminology of [Sc-ZI], “elementary” complexes

will play a big role in the sequel. However, in some sense, also indecomposable

complexes with decomposable components (Example C) behave like rather small

building blocks.

This paper is organized as follows. Section 1 contains definitions and con-

ventions. Section 2 describes more precisely the different strategies used to

construct our bounded complexes. Finally, Section 3 contains examples and

proofs.

I would like to thank Professor Mary Schaps, for her immediate and very

helpful answer [Sc] to my question on maps “of minimal degree”, that is with

the largest possible image.

1. Preliminaries

Let R be a ring. We denote by R-Mod the category of all left R–modules. If

M ∈ R-Mod, then we write AddM for the class of all modules isomorphic to

direct summands of direct sums of copies of M . Next, for every cardinal λ, we

write M (λ) for the direct sum of λ copies of M . Finally, we write M
⊥∞

for the

class

M
⊥∞

=
{

X ∈ R− Mod : ExtiR(M,X) = 0 for all i ≥ 1
}

.

The symbol pdim(M) denotes the projective dimension of M .

We shall say that an R-module T is a partial n-tilting module if the

following conditions hold:

• pdim(T ) ≤ n ;

• Exti
R(T, T (λ)) = 0 for every i ≥ 1 and every cardinal λ.
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Given a partial n-tilting module T , we shall say that T is an n-tilting module

if there is a long exact sequence of the form

0 −→ R −→ T0 −→ T1 −→ · · · −→ Tn −→ 0,

where Ti ∈ AddT for every i = 0, 1, . . . , n.

From now on, we shall say, for brevity, that a partial n-tilting module T is a

large partial n-tilting module if

KerHom(T,−) ∩ T⊥∞ = 0.

Consequently, for every large partial n-tilting module T , we have

(?) Hom(T, I) 6= 0 for every non-zero injective module I.

If there are only finitely many simple modules and T has finite length, this

implies that T is sincere [AuReS], that is every simple module appears as a

composition factor of T .

Maintaining the terminology introduced above, we recall some properties of

partial n-tilting modules.

• For every n ≥ 1, every n-tilting module T is a large partial n-tilting

module [B, p. 371].

• A finitely presented module T is a 1-tilting module if and only if T is a

large partial 1-tilting module [C, Theorem 1] (also see [CbF, Theorem

3.2.1 and Section 3.1]).

• If P is a partial 1-tilting module which is not a 1-tilting module, then its

perpendicular class [CTT], that is the class P+ =KerHom(P,−) ∩ P⊥∞ ,

is equivalent to the category of all modules over a suitable endomor-

phism ring ([CTT, Propositions 1.4 and 1.5] and [GL, Proposition 3.8]).

• For every n ≥ 2, there exists non faithful large partial n-tilting modules

of projective dimension n and Loewy length 2 [D2, Example 4].

As it turns out, some “local” properties plus a “global” and functorial Hom-Ext

condition characterize several tilting objects, for instance, tilting complexes in

the sense of Rickard [Rk], and tilting objects in the sense of Happel, Reiten and

Smalø [HReS]. Let us recall some definitions and conventions.

Given a ring R, we write K(R) for the category of complexes over R with

morphisms modulo homotopy. Let Ṫ ∈ K(R) be a bounded complex of finitely

generated projective R–modules. Assume the following conditions hold:

(1) HomK(R)(Ṫ , Ṫ [i]) = 0 for every i 6= 0,
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(2) For every non-zero right bounded complex Ẋ ∈ K(R) of projective R–

modules there exists some i ∈ Z, such that HomK(R)(Ṫ , Ẋ[i]) 6= 0.

Then Ṫ is a tilting complex, in the sense of Rickard [Rk] as observed by

Miyachi [Mi, condition (iii)’, p. 184]. In other words, the global, but functo-

rial, condition (2) can replace a global non-functorial condition on triangulated

categories, which says the following

• add Ṫ , the additive category of direct summands of finite direct sums

of copies of Ṫ , generates (as a triangulated category) the category of all

bounded complexes of finitely generated projective R-modules.

Consequently, given a noetherian ring R, every tilting complex Ṫ satisfies the

following condition ([Sc-ZI, condition (2) in the Definition of p. 190])

• If P is an indecomposable projective module and Ṗ is the stalk complex

0 −→ P −→ 0, with P in degree 0, then Ṗ belongs to add Ṫ .

Finally, let Ṫ ∈ K(R) be a bounded complex of finitely generated projective R-

modules. Then, following the definition of [Sc-ZI] for complexes over noetherian

rings, we shall say that Ṫ is a partial tilting complex if HomK(R)(Ṫ , Ṫ [i]) = 0

for every i 6= 0.

Throughout the paper, given a module M , the symbol Ṁ denotes a right

bounded complex of projective modules of the form · · · −→ P1 −→ P0 −→ 0,

where P0 is in degree 0 and · · · −→ P1 −→ P0 −→M −→ 0 is a fixed projective

resolution of M .

Next, K always denotes an algebraically closed field, and we always identify

modules with their isomorphism classes (resp., complexes with their homotopy

classes). Moreover, if Λ is aK-algebra given by a quiver and relations, according

to [R1], then we often replace indecomposable finite dimensional modules by

some obvious pictures, describing their composition factors. If M is a module of

finite length of the form
⊕m

i=1M
di

i , where di > 0 for every i andM1, . . . ,Mm are

pairwise indecomposable, then we denote m by δ(M). Over a representation-

finite algebra given by a quiver, we often denote by x the simple module S(x)

corresponding to the vertex x, and by P (x) the projective cover of S(x).

When dealing with a complex Ċ, we often write Zi, Bi and Hi instead of

Zi(Ċ), Bi(Ċ) and Hi(Ċ). Moreover, we often write d, instead of di, for the

usual morphism Ci −→ Ci−1.

We end with the conventions used to describe morphisms between indecom-

posable projective modules P and Q (defined over the K-algebra Λ) with the

following useful combinatorial property: the K-dimension of the vector space
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V = {f ∈ HomΛ(P,Q) : f(P ) 6= Q} is at most one. First of all, the symbol

P −→ Q will denote a fixed generator v of V , and the symbol P
a

−→ Q will

denote the morphism av for all a ∈ K. Secondly, we shall use Greek letters

α, β, . . . to denote arbitrary morphisms. Finally, the symbols M
'
−→ M and

M
0

−→ N will denote the identity and the zero morphism.

2. Strategies

We can now state as follows the question discussed in this paper.

Question 1 (F. Mantese and A. Tonolo): Let T be a large partial n-tilting

module which is not an n-tilting module, and let Ṫ be the projective resolution

of T . Finally, let Ċ be a non-zero right bounded complex of projective modules,

such that every morphism Ṫ −→ Ċ[i] is homotopic to zero for every i ∈ Z.

Under all these hypotheses, is Ċ necessarily unbounded?

We will give a negative answer to this question by means of rather small

complexes Ċ, quite similar to the projective resolutions Ḃ of suitable injective

module B (of finite projective dimension). To do this, we shall use two lemmas

on indecomposable complexes of opposite type, with either one (Lemma 1) or

exactly n + 1 (Lemma 2) non-zero and indecomposable components. We may

describe the strategies used in the sequel to obtain Ċ from Ḃ as follows.

• Left cancellation, that is cancellation of some of the first non-zero

components of Ḃ on the left hand side (Example A(ii) with n even.).

• Left and right cancellation, that is cancellation of some non-zero

components of Ḃ on both sides (Examples A(ii) with n odd).

• Right addition, that is addition of at least one new non-zero compo-

nent to the right hand side of Ḃ (Example D(ii)).

• Left perturbation, that is substitution of the first non-zero compo-

nent by a proper submodule (Example C(iii)).

More generally, indecomposable complexes Ċ of the form 0 −→ P −→ Q −→ 0,

with P and Q indecomposable projective and P 6= Q, play an important role,

even when the projective dimension of T is very large (Example A). In other

words, we could repeat the remarks of Schaps and Zakay–Illouz [Sc-ZI] on the

importance of indecomposable complexes “of a special combinatorial charac-

ter,” for instance “two-restricted” and “elementary” [Sc-ZI, Abstract, p. 187;

Definition, p. 190].
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Moreover, a certain useful complex Ċ, with more than two non-zero terms

(Example C), resembles the examples of “many other indecomposable complexes

from which tilting complexes could be constructed” ([Sc-ZI, Note, p. 191]). We

now point out two “concealed” combinatorial properties satisfied by the K-

algebras Λ considered in the following:

• Many indecomposable modules P are bricks [R1], that is we have

EndΛ(P ) ' K.

• Every non-zero and non-surjective morphism between indecomposable

projective modules is uniquely determined up to a scalar.

Finally, we stress the fact that all four operations described above lead to inde-

composable complexes (Proposition 3) with the property that many combina-

torial, more or less “visible”, data take their smallest possible value.

3. Examples and Proofs

We begin with a lemma on stalk complexes.

Lemma 1: Let P be an indecomposable projective R-module, let Ċ ∈ K(R)

and let H =
⊕

i∈Z
Hi, where Hi is the i-th homology module of Ċ for any i.

Then the following conditions are equivalent:

(a) HomK(R)(Ṗ , Ċ[i]) = 0 for every i;

(b) HomR(P,H) = 0.

Proof. (a)⇒(b) Assume (a) holds, and α : P −→ Hl is a morphism for some

l. Since P is projective, we may lift α to a morphism β : P −→ Zl. Let

i : Zl −→ Cl be the canonical inclusion, and let γ = i ◦ β. Then the following

picture

(?)

0 // P //

γ
��

0

. . . // Cl+1
// Cl

// Cl−1
// . . .

describes an element γ̇ ∈ HomK(R)(Ṗ , Ċ[l]). On the other hand, by (a), we

have γ̇ = 0. Consequently we get γ(P ) ⊆ Bl, and so α = 0.

(b)⇒(a) Suppose that (b) holds and that (?) describes an element γ̇ ∈

HomK(R)(Ṗ , Ċ[l]). Since γ(P ) ⊆ Zl, we deduce from (b) that γ(P ) ⊆ Bl.

Therefore γ̇ = 0, and the lemma is proved.
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As was mentioned in the introduction, indecomposable complexes with as

few as possible morphisms between two of their non-zero component play an

important role in the sequel. In particular, we shall often use the following

lemma on complexes over a K-algebra Λ.

Lemma 2: Let M be an indecomposable non projective Λ-module over a K-

algebra Λ. Assume Ṁ is of the form 0 −→ Pn −→ · · · −→ P1 −→ P0 −→ 0,

where n ≥ 2 and the following condition holds:

HomΛ(Pi, Pj) ' K if either i = j or i = j + 1, andHomΛ(Pi, Pj
) = 0(+)

otherwise.

Let Ẋ denote a complex of the form 0 −→ Pr −→ · · · −→ Ps −→ 0, where n >

r > s ≥ 0 and Ẋ is obtained from Ṁ by deleting n− r ≥ 1 components on the

left and s ≥ 0 components on the right. Then we have HomK(Λ)(Ṁ, Ẋ[i]) = 0

for every i ∈ Z.

Proof. Let α̇ be a morphism of the form

(1)

0 // Pn
// . . . // Pr

//

αr

��

. . . // Ps
//

αs

��

. . . // P0
// 0

0 // Pr
// . . . // Ps

// 0

Since n > r, it follows that αi = 0 for every i. Hence we have α̇ = 0. Next, let

β̇ be a morphism of the form

(2)

. . . // Pr+1
dr //

βr

��

Pr
//

βr−1
��

. . . // Ps+1
ds //

βs

��

Ps
// . . .

0 // Pr
dr−1

// Pr−1
// . . .

ds

// Ps
// 0

Since (+) holds, we have HomR(Pi+1, Pi) = EndR(Pi) ◦ di for every i =

s, . . . , r. Consequently, proceeding from left to right, we can find endomor-

phisms γr, . . . , γs of Pr, . . . , Ps such that γr ◦ dr = βr, γr−1 ◦ dr−1 = βr−1 −

dr−1 ◦ γr, . . . , γs ◦ ds = βs − ds ◦ γs+1. Hence we have β̇ = 0. Since (+) holds,

this implies that HomK(Λ)(Ṁ, Ẋ[i]) = 0 for every i, as desired.

We begin with an example where all modules have Loewy length ([AF] or

[AuReS]) at most equal to two.
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Example A (Left cancellation or left and right cancellation): For any n ≥ 2,

there is a large partial n-tilting Λ-module T with the following properties:

(i) T is not faithful and pdim(T ) = n.

(ii) There is an indecomposable complex Ẋ of the form 0 −→ P −→ Q −→ 0,

with P and Q indecomposable projective, such that HomK(Λ)(Ṫ , Ẋ[i]) = 0

for every i ∈ Z.

(iii) Up to shift, the number of choices of Ẋ in (ii) is n/2 if n is even, and

(n− 1)/2 if n is odd.

(iv) Up to shift, δ(Λ)−δ(T ) is at most equal to the number of indecomposable

complexes Ẏ such that every non-zero component of Ẏ is an indecompos-

able projective module, and HomK(Λ)(Ṫ , Ẏ [i]) = 0 for every i ∈ Z. More-

over, δ(Λ) − δ(T ) is equal to this number if and only if δ(Λ) − δ(T ) = 1,

that is if and only if n = 2, 3.

(v) The complexes Ẋ in (ii) and Ẏ in (iii) are complexes Ċ such that

HomK(Λ)(Ċ, Ċ[j]) = 0

for every integer j 6= 0.

Construction. Let Λ be the K-algebra given by the quiver

•
1

a1 // •
2

a2 // •
3

•
n

an // •
n+1

with relations ai+1ai = 0 for i = 1, . . . , n− 1. Next, let T denote the following

injective module:

T =
�

�

n
n+1 ⊕ n−2

n−1 ⊕ · · · ⊕ 2
3 ⊕ 1 if n is even

n
n+1 ⊕ n−2

n−1 ⊕ · · · ⊕ 1
2 ⊕ 1 if n is odd

Then one easily sees [D2, Example 4 and Remark 5] that T is a large partial

n-tilting module, and (i) clearly holds. To end the proof, we first note that 1̇ is

a complex of the form

0 −→ n+ 1 −→
n

n+ 1
−→ · · · −→

2

3
−→

1

2
−→ 0.

Next, let Ẋ denote an indecomposable complex of the form

0 −→
2

3
−→

1

2
−→ 0

if n is even, and of the form

0 −→
3

4
−→

2

3
−→ 0
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if n is odd. By Lemma 2, the definition of Ṫ and Ẋ implies that

(1) HomK(Λ)(1̇, Ẋ[i]) = 0 for every i.

We also observe that

An indecomposable projective-injective module P (j) is a summand of(2)

T if and only if either j and n are even, or j and n are odd.

This remark and Lemma 1 guarantee that

(3) HomK(Λ)(V̇ , Ẋ[i]) = 0 for every i and every projective summand V of T .

Putting (1) and (3) together, we conclude that Ẋ satisfies (ii). Moreover, by

(2) and Lemmas 1 and 2, we may replace our choice of Ẋ with that of any

indecomposable complex of the form 0 −→ j
j+1 −→ j−1

j
−→ 0, where n ≥ j

and j is even if n is even, while j is odd if n is odd. Consequently, (iii) follows

from Lemma 1 and (2). On the other hand, the first part of (iv) follows from

the remark that δ(Λ)− δ(T ) coincides with the number of choices of Ẋ in (iii).

Assume first n = 2, 3. Then Lemma 1 implies that only a complex of the form

0 −→ 2
3 −→ 1

2 −→ 0 (resp., 0 −→ 3
4 −→ 2

3 −→ 0) satisfies (iv) if n = 2 (resp.,

n = 3). Suppose now n ≥ 4. Then any indecomposable complex obtained

“by gluing together” at least two suitable complexes Ẋ1 and Ẋ2 satisfying (iii),

actually satisfies (iv). For instance, by Lemmas 1 and 2, we may choose the

complex

0 −→
4

5
−→

3

4
−→

2

3
−→

1

2
−→ 0

if n is even, and the complex

0 −→
5

6
−→

4

5
−→

3

4
−→

2

3
−→ 0

if n is odd. Therefore (iv) holds. Finally, for any i = 2, . . . , n and j < i, any

morphism of the form

(4)

0 // i
i+1

//

αi

��

. . . // j+1
j+2

//

αj+1

��

j
j+1

// 0

0 // i
i+1

// i−1
i

// . . . // j
j+1

// 0

is homotopic to zero. By (ii) and (iii), this implies that also (v) holds.
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In the next example we deal with an algebra of global dimension two, such

that every indecomposable module is uniserial.

Example B (Left perturbation): There are a large partial 2-tilting Λ-module T

and an indecomposable complex Ẋ with the following properties:

(i) HomK(Λ)(Ṫ , Ẋ[i]) = 0 for every i ∈ Z;

(ii) HomK(Λ)(Ẋ, Ẋ[j]) = 0 for every j 6= 0;

(iii) Ẋ is of the form 0 −→ P −→ Q −→ R −→ 0 with P,Q,R indecomposable

projective modules.

(iv) No indecomposable complex of the form 0 −→ P −→ Q −→ 0 with P and

Q indecomposable projective satisfies (i).

Construction. Let Λ be the K-algebra given by the quiver

•
1

a // •
2

b // •
3

c // •
4

with relation ba = 0. Next, let T be the injective module
2
3
4
⊕ 2

3 ⊕ 1 . Since the

global dimension of Λ is equal to 2, the conclusion that T is a partial 2-tilting

module follows from a direct check or from [D1, Lemma 1, (ii)]. We also note

that the indecomposable modules belonging to KerHomΛ(T,−) are 4, 3
4 and 3.

Since Ext1Λ
(

2
3 ,M

)

6= 0 for M = 4, 3
4 and Ext2Λ(1, 3) 6= 0, it follows that M is a

large partial 2-tilting module. Finally, let Ẋ be a complex of the form

0 −→ 4 −→

2

3

4

−→
1

2
−→ 0.

Then (iii) clearly holds, and the homology module H of Ẋ is H = 3 ⊕ 1. Since
2
3
4

is projective as well as injective, by Lemma 1, we have

(1) HomK(Λ)

(

2̇
3
4
, Ẋ[i]

)

= 0 for every i ∈ Z.

Now consider all possible chain maps from 2̇
3 to Ẋ[i]. Every picture of the form

(2)

0 // 4 //

a
��

2
3
4

//

b
��

0

0 // 4 // 2
3
4

// 1
2

// 0
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describes a morphism homotopic to zero. On the other hand, for every mor-

phism of the form

(3)

0 // 4 //

c

��

2
3
4

//

d
��

0

0 // 4 // 2
3
4

// 1
2

// 0

we have d = c = 0. Consequently, by (2) and (3), we obtain

(4) HomK(Λ)

(

2̇
3 , Ẋ[i]

)

= 0 for every i ∈ Z.

Finally, we consider all possible maps from 1̇ to Ẋ [i]. We first note that any

picture of the form

(5)

0 // 3
4

//

a
��

2
3
4

//

b
��

1
2

// 0

0 // 4 // 2
3
4

// 1
2

// 0

describes a morphism homotopic to zero. Moreover, for every morphism of the

form

(6)

0 // 3
4

//

0

��

2
3
4

//

c
��

1
2

//

d
��

0

0 // 4 // 2
3
4

// 1
2

// 0

we have c = d = 0. Putting (5) and (6) together, we get

(7) HomK(Λ)

(

1̇, Ẋ[i]
)

= 0 for every i ∈ Z.

Therefore (i) follows from (1), (4) and (7).

Finally, as in (5) any morphism of the form

0 // 4 //

a
��

2
3
4

//

b
��

1
2

// 0

0 // 4 // 2
3
4

// 1
2

// 0
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is homotopic to zero, and all other nontrivial shifts have zero maps in each

degree. Consequently also (ii) holds.

Now, let Ċ be an indecomposable complex of the form 0 −→
2
3
4
−→ 1

2 −→ 0,

and let i : 4 −→
2
3
4

be the canonical inclusion. Then the picture

0 // 4
i //

i
��

2
3
4

//

0
��

0

0 // 2
3
4

// 1
2

// 0

describes a morphism which is not homotopic to zero. Since 2̇
3 is a summand of

Ṫ , it follows that Ċ does not satisfy (i). This remark and the structure of the

indecomposable projective modules imply that (iv) holds.

As the following example shows, indecomposable complexes with decompos-

able components play an important role, even for algebras of global dimension

two.

Example C (Left cancellation and left perturbation): There are two nonfaithful

large partial 2-tilting modules T and U over a K-algebra Λ with the following

properties:

(i) HomK(Λ)(U̇ , Ẋ[i]) = 0 for every i ∈ Z, where Ẋ is an indecomposable

complex of the form 0 −→ P −→ Q −→ 0 with P and Q indecomposable

projective.

(ii) If Ẋ satisfies (i), then we have HomK(Λ)(Ṫ , Ẋ[j]) 6= 0 for some j.

(iii) HomK(Λ)(Ṫ , Ẏ [i]) = 0 for every i ∈ Z, for some indecomposable complex

Ẏ with exactly three non-zero components.

(iv) If Ẏ satisfies (iii), then at least one non-zero component of Ẏ is decom-

posable.

(v) If W is a proper direct summand of T (resp. U), then W is not a large

partial 2-tilting module.

(vi) Ẋ in (ii) and Ẏ in (iii) may be complexes Ċ ∈ K(Λ) such that

HomK(Λ)(Ċ, Ċ[j]) = 0

for every integer j 6= 0.
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Construction. Let Λ be the K-algebra given by the quiver

•1

a   A
AA

AA
AA

A •2

b~~}}
}}

}}
}}

•3

c
��
•4

with relations ca = 0 and cb = 0. Next, let T and U denote the following

injective modules:

T = 1 ⊕ 2 ⊕
3

4
, U =

1 2

3
⊕

3

4
.

Then we obviously have Ext2(1, 4) ' Ext1Λ(3, 4) 6= 0 and Ext2
(

1 2
3 , 4

)

'

Ext1Λ(3, 4) 6= 0. Since 4 is the unique indecomposable module in KerHomΛ(T,−)

and in KerHomΛ(U,−) and 4 does not lie in T
⊥∞

or U
⊥∞

, it follows that T and

U are large partial 2-tilting modules. Now, let Ẋ denote an indecomposable

complex of the form

0 −→
3

4
−→

1

3
−→ 0.

Then the following picture

(1)

0 // 4 // 3
4

( 1

1 ) //

α
��

1
3 ⊕ 2

3
//

β
��

0

0 // 3
4

// 1
3

// 0

describes a morphism if and only if α = 0 and β = 0. On the other hand,

proceeding from left to right, we see that any morphism of the form

(2)

0 // 4 //

γ
��

3
4

( 1

1 ) //

δ
��

1
3 ⊕ 2

3
// 0

0 // 3
4

// 1
3

// 0

is homotopic to zero. Moreover, by Lemma 1, we have HomK(Λ)

(

3̇
4 , Ẋ[i]

)

= 0

for every i ∈ Z. By (1) and (2), this implies that Ẋ satisfies (i). A similar
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argument clearly works for an indecomposable complex of the form

0 −→
3

4
−→

2

3
−→ 0.

Next, let i : 4 −→ 3
4 be the canonical inclusion. Then the morphisms

0 // 4 //

i
��

3
4

//

0
��

1
3

// 0

0 // 3
4

// 2
3

// 0

and

0 // 4 //

i
��

3
4

//

0
��

2
3

// 0

0 // 3
4

// 1
3

// 0

are not homotopic to zero. Consequently, since the top complexes are 1̇ and 2̇,

also (ii) holds.

Finally, let Ẏ be a complex of the form

0 −→ 4
α
−→

3

4
⊕

3

4

β
−→

1

3
⊕

2

3
−→ 0 ,

where α =
(

1
1

)

and β =
(

1 0
0 1

)

. Then the picture

(3)

0 // 4 //

a

��

3
4

//

(

b

c

)

��

1
3

//

(

d

0

)

��

0

0 // 4
α // 3

4 ⊕ 3
4

β
// 1
3 ⊕ 2

3
// 0

describes a morphism if and only if
(

a
a

)

=
(

b
c

)

and
(

b
c

)

=
(

d
0

)

, that is if and

only if a = b = c = d = 0. Next, let φ̇ be a morphism of the form

(4)

0 // 4 //

(

a

b

)

��

3
4

//

(

c

d

)

��

1
3

// 0

0 // 4
α // 3

4 ⊕ 3
4

β // 1
3 ⊕ 2

3
// 0

For brevity, let x, y, z, t denote the elements d, a − b + d, b − d and

−a + b + c − d, respectively. Then the morphisms 4
z

−→ 4, 3
4

(

y

x

)

// 3
4 ⊕ 3

4

and 1
3

(

t

0

)

// 1
3 ⊕ 2

3
tell us that φ̇ = 0. Putting (3) and (4) together, we

obtain HomK(Λ)(1̇, Ẏ [i]) = 0 for every i ∈ Z. A similar argument shows

that HomK(Λ)(2̇, Ẏ [i]) = 0 for every i. Moreover, by Lemma 1, we have
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HomK(Λ)

(

3̇
4 , Ẏ [i]

)

= 0. Thus (iii) holds. On the other hand, the two complexes

0 −→ 4 −→ 3
4 −→ i

3 −→ 0 with i = 1, 2 are the unique indecomposable

complexes with exactly three non-zero and indecomposable components. There-

fore (iv) clearly holds. Since T and U have no proper sincere direct summand,

also (v) holds. Finally, as in Example A, any morphism of the form

(5)

0 // 3
4

//

��

1
3

// 0

0 // 3
4

// 1
3

// 0

is homotopic to zero. Now, keeping the above hypothesis that α =
(

1
1

)

and

β =
(

1 0
0 1

)

, let ψ̇ denote the morphism

(6)

0 // 4
α //

(

a

b

)

��

3
4 ⊕ 3

4

β
//

(

c d
e f

)

��

1
3 ⊕ 2

3
// 0

0 // 4
α // 3

4 ⊕ 3
4

β
// 1
3 ⊕ 2

3
// 0

Next, let σ =
(

a−d d
e b−e

)

, and let τ =
(

−a+c+d 0
0 −b+e+f

)

. Since σ ◦α = ( a
b ) and

β ◦σ+ τ ◦ β = σ+ τ =
(

c d
e f

)

, we get ψ̇ = 0. Consequently, (vi) follows from (5)

and (6).

Note that the complex Ẏ , constructed in Example C, is big enough to satisfy

the following condition

• Every indecomposable projective module occurs as a direct summand

of a component of Ẏ .

Moreover,every indecomposable projective module over the algebras constructed

in Examples A, B and C is a brick. On the other hand, the indecomposable

complex Ẋ constructed in the next example satisfies the following conditions:

• Every indecomposable projective module occurs as a component of Ẋ.

• There exists two indecomposable projective modules, and exactly one

of them is (resp., is not) a brick.

Example D (Right addition): There are a non-faithful large partial 2-tilting

Λ-module T and an indecomposable complex Ẋ, with exactly 4 non-zero com-

ponents, satisfying the following conditions:
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(i) T is the i-th homology module of Ẋ for some i ∈ Z.

(ii) HomK(Λ)(Ṫ , Ẋ[i]) = 0 for every i ∈ Z.

(iii) HomK(Λ)(Ẋ, Ẋ[j]) = 0 for every integer j 6= 0.

(iv) Let Ċ be an indecomposable bounded complex of projective modules such

that HomK(Λ)(Ṫ , Ċ[i]) = 0 for every i ∈ Z. If every non-zero component

of Ċ is indecomposable, then Ċ has exactly four non-zero components.

Construction. Let Λ the Nakajama K-algebra given by the quiver

•

1

α1 ��

•

2α2

__

with relation α2α1 = 0, considered in [M, Example 3.2] with n = 2. Next, let

T be the injective module 2
1 . Then T is a large partial 2-tilting module ([D1,

Example 3], a special case of [D2, Example 7]).

Finally, let Ẋ denote a complex of the form

0 −→
1

2
−→

2

1

2

−→

2

1

2

−→

2

1

2

−→ 0 .

Then (i) clearly holds. Let ϕ̇ be a morphism of the form

(1)

0 // 1
2

//

α
��

2
1
2

d //

β
��

2
1
2

//

γ
��

. . .

0 // 1
2

// 2
1
2

d // 2
1
2

d // 2
1
2

// 0.

Then, proceeding from left to right, we first note that d ◦ α = 0. Hence,

Kerβ 6= 0 and so d ◦ β = 0. This implies that Ker γ 6= 0. Using these remarks

and proceeding from right to left, we conclude that ϕ̇ = 0. Now, let ω̇ be a

morphism of the form

(2)

0 // 1
2

//

δ
��

2
1
2

d //

ε
��

2
1
2

//

η
��

0

0 // 1
2

// 2
1
2

d // 2
1
2

d // 2
1
2

// 0.
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Proceeding from right to left, we obtain Ker η 6= 0. Hence we have Ker ε 6= 0

and δ = 0. At this point, proceeding from right to left, we see that ω̇ = 0.

Next, assume τ̇ is a morphism of the form

(3)

. . . // 2
1
2

//

α

��

2
1
2

//

β

��

0

0 // 1
2

// 2
1
2

// 2
1
2

// . . . .

Since Kerβ 6= 0, we have α = 0. It follows that τ̇ = 0. Dually, let σ̇ be a

morphism of the form

(4)

0 // 1
2

//

α

��

2
1
2

//

β

��

2
1
2

// . . .

. . . // 2
1
2

// 2
1
2

// 0 .

Also in this case, we have Kerβ 6= 0. Consequently, we get σ̇ = 0. Finally, let

ρ̇ denote a morphism of the form

(5)

. . . //
2

1

2

//
2

1

2

//

ρ

��

0

0 // 1

2
//

2

1

2

// . . .





























resp.

0 // 1

2
//

ρ

��

2

1

2

// . . .

. . . //
2

1

2

//
2

1

2

// 0 .





























Since ρ = 0 (resp., ρ extends to an endomorphism of the injective module
2
1
2
),

we have ρ̇ = 0. Putting (1), (2), (3), (4) and (5) together, we obtain (ii). On

the other hand, let λ̇ be a morphism of the form

(6)

0 // 1
2

// 2
1
2

//

α

��

2
1
2

//

β

��

2
1
2

//

γ

��

0

0 // 1
2

// 2
1
2

// 2
1
2

// 2
1
2

// 0 .

Then the arguments used in (2) show that λ̇ = 0. Consequently, (iii) follows

from (1), (3), (4), (5) and (6). Assume now α :
2
1
2
−→

2
1
2

is a non-zero morphism
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with Kerα 6= 0. Then the morphism

(7)

0 // 1
2

// 2
1
2

//

α

��

2
1
2

//

0

��

0

0 // 2
1
2

// 2
1
2

// 0 .

is not homotopic to zero. Moreover, no morphism of the form

(8)

0 // 1
2

//

'

��

2
1
2

// . . .

. . . // 2
1
2

// 1
2

// 0 .

is homotopic to zero. Since T is a large partial 2-tilting module, (7) and (8)

imply that the complexes Ċ satisfying (iv) are of the form

(9) 0 // 1
2

//
2

1

2

// . . . //
2

1

2

//
2

1

2

// 0 ,

and exactly one component is isomorphic to 1
2 . Let β : 1

2 −→
2
1
2

be a non-zero

morphism. Then the following morphism

(10)

0 // 1
2

//

β

��

2
1
2

//

0

��

2
1
2

//

0

��

0

. . . // 2
1
2

// 2
1
2

// 2
1
2

// 2
1
2

// 0 .

is not homotopic to zero. Thus the complex in (9) has less than four components

isomorphic to
2
1
2
. Therefore, our proof of (ii) shows that also (iv) holds.

The following statement is an immediate consequence of the previous exam-

ples.

Proposition 3: Let V be a large partial n-tilting Λ-module with pdim(V ) = n,

and let Ċ ∈ K(Λ) be an indecomposable complex with the following properties:

(1) HomK(Λ)

(

V̇ , Ċ[i]
)

= 0 for every i ∈ Z;
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(2) Ċ is a bounded partial tilting complex with r non-zero components and s

non-zero homology modules.

(3) Every indecomposable complex Ḋ satisfying (1) and (2) has at least s non-

zero homology modules.

Let H =
⊕

i∈Z
Hi, where Hi is the i-th homology module of Ċ. Then V and Ċ

may satisfy one of the following conditions:

(a) n runs over all natural number ≥ 2, r = s = 2, H is semisimple but not

sincere, and any non-zero component of Ċ is indecomposable.

(b) n = s = 2, r = 3, H is semisimple but not sincere, and any non-zero

component of Ċ is indecomposable (resp., Ċ has both decomposable and

indecomposable components).

(c) n = s = 2, r = 4, H is sincere but not semisimple, and any non-zero

component of Ċ is indecomposable.

(d) dimK(H) = 2, and a simple module S(x) is a composition factor of H if

and only if P (x) is not a direct summand of V .

(e) dimK(H) = 2, and there is a simple module S(x) such that S(x) is not a

composition factor of H and P (x) is not a direct summand of V .

Proof. (a) Let V denote the module T constructed in Example A (that is the

module n
n+1 ⊕

n−2
n−1 ⊕· · ·⊕ 2

3 ⊕ 1 if n is even, and the module n
n+1 ⊕

n−2
n−1 ⊕· · ·⊕

1
2 ⊕ 1 if n is odd). Next, let Ċ denote the complex Ẋ constructed in the same

example (of the form 0 → 2
3 → 1

2 → 0 if n is even, and 0 → 3
4 → 2

3 → 0

if n is odd). Then (a) follows from conditions (ii) and (v) in Example A.

(b) Let V denote the module T =
2
3
4
⊕ 2

3 ⊕ 1 constructed in Example B

(resp., T = 1 ⊕ 2 ⊕ 3
4 constructed in Example C). Next, let Ċ denote the

complex Ẋ (resp., Ẏ ) constructed in the same example, of the form

0 → 4 →

2

3

4

→
1

2
→ 0 (resp., 0 → 4

(

1

1

)

−→
3

4
⊕

3

4

(

1 0

0 1

)

−→
1

3
⊕

2

3
→ 0 ).

Then (b) follows from (i) and (ii) in Example B (resp., (iii), (iv) and (vi) in

Example C).

(c) Let V denote the module T = 2
1 constructed in Example D. Next,

let Ċ denote the complex Ẋ considered in the same example, of the form

0 → 1
2 →

2
1
2

→
2
1
2

→
2
1
2

→ 0 . Then (c) follows from (ii) and (iii) in

Example D.
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(d) This is an immediate consequence of the above proof of (a) with n = 2,

V = 2
3 ⊕ 1 and Ċ = Ẋ of the form 0 → 2

3 → 1
2 → 0 .

(e) For every n ≥ 5, it suffices to choose V and Ċ as in the proof of (a) and

x = 5 if n is even (resp., x = 6 if n is odd).

We end with three remarks concerning the presence/absence of

• Classes of modules in several definitions of tilting-type modules (Re-

mark 4);

• non-zero and non surjective morphisms in the construction of several

complexes (Remark 5).

• Enough injective summands of large partial tilting modules (Remark 6).

Remark 4: In this paper we use only the “discrete” definition of n-tilting and

partial n-tilting modules, recalled at the beginning of Section 2. We refer to

[B, Proposition 3.6 and Lemma 3.12] for “continuous” characterization of these

modules (and their duals), by means of two classes of modules. By repeating the

words of [R3, Section II, Module Theory], we recall that many “subcategories

of module categories” play an important role in Tilting Theory. In some sense,

our results on bounded complexes describe an “implicit finiteness property”

[KT, Introduction] of tilting modules. (For the relationship between modules

“of finite type” and tilting modules, see, for instance, [AnHT, BH, StT, BSt]

and the other papers quoted in [T, Section 4]).

Remark 5: In some of the examples used to prove Proposition 3, the relationship

between V and Ċ is explained by a morphism of the form f : L −→ M with

the following properties:

• L is an indecomposable summand of V .

• M is an indecomposable projective module, such that M ∈ V ⊥∞ but

M 6∈ add(V ).

• The left hand side of Ċ describes the complex L̇, while the right hand

side describes M .

We list in the sequel some examples of this kind.

(1) L = i
i+1 , M = i−1

i
with i = 2 if n is even (resp., i = 3 if n is odd) and Ċ

is a complex of the form 0 → i
i+1 → i−1

i
→ 0 (see Example A(ii) and

Proposition 3(a)).

(2) L = 2
3 , M = 1

2 and Ċ is a complex of the form 0 → 4 →
2
3
4
→ 1

2 → 0

(see Example B and Proposition 3(b)).
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(3) L = 2
1 , M =

2
1
2

and Ċ is a complex of the form 0 → 1
2 →

2
1
2
→

2
1
2
→

2
1
2
→ 0

(see Example D and Proposition 3(c)).

Remark 6: The construction of the complex Ẏ , satisfying condition (iii) of Ex-

ample C, makes use of a decomposable complex, that is of the projective reso-

lution Ḃ of the decomposable injective summand B = 1⊕ 2 of the given partial

2-tilting module T = 1 ⊕ 2 ⊕ 3
4 . In this case we obtain the complex Ẏ

from Ḃ by replacing the first non-zero map on the left, that is the inclusion

4 ⊕ 4 −→ 3
4 ⊕ 3

4 , with the “diagonal” map
(

1
1

)

: 4 −→ 3
4 ⊕ 3

4 .

One can use Example C also to see that the useful complexes Ḃ (involved

in the four operations of Section 2) are not necessarily direct summands of the

given partial tilting complex. For instance, we obtain the complex Ẋ satisfying

condition (ii) of Example C from the projective resolution Ḃ of the simple

injective module B = 1. In this case, B is not a direct summand of the given

partial tilting module U = 1 2
3 ⊕ 3

4 . However, the complex U̇ ⊕ Ḃ, as well as U̇ ,

is again a partial tilting complex, which is not a tilting complex.

Acknowledgement. I would like to thank the referee for many helpful com-

ments and suggestions.
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